Two long pipes convey water between two reservoirs whose water surfaces are at different elevations. One pipe has a diameter twice that of the other; both pipes have the same length and the same value of f. If minor losses are neglected, what is the ratio of the flow rates through the two pipes?

Eq. 8.13:
\[\Delta \text{elev} = h_f = f(L/D)V^2/(2g) \quad \text{where} \quad V = Q/A = Q/((\pi D^2/4)) \]

\[\therefore \quad h_f = f(L/D)[Q/((\pi D^2/4))]^2/2g = f1.4^2Q^2/(2gD\pi^2 D^4) \]

Thus
\[h_f \propto Q^2/D^5; \quad (h_1)_1 = (h_1)_2; \quad Q_1^2/D_1^5 = Q_2^2/D_2^5 \quad \text{and} \quad Q_2/Q_1 = (D_2/D_1)^{5/2} = 2^{5/2} = 5.66 \]

The flow in the larger pipe will be 5.66 times that in the smaller pipe.

Tests were made with 60°F water flowing in a 9-in-diameter pipe. They showed that, when $V = 12$ fps, $\rho = 0.0165$. Find the unit shear at the pipe wall and at radii of 0, 0.25, 0.4, 0.6, 0.85 times the pipe radius.

Table A.1 for water at 60°F:
\[\rho = 1.938 \text{ slugs/ft}^3 \]

(a) Eq. 8.19:
\[\tau_0 = (0.0165/4)1.938(12^2/2) = 0.576 \text{ psf, at wall} \]

(b) Stress distribution is linear (Eq. 8.18):

<table>
<thead>
<tr>
<th>τ (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r/r_0</td>
</tr>
</tbody>
</table>
| 0 | 0
| 0.25 | 0.1439
| 0.4 | 0.230
| 0.6 | 0.345
| 0.85 | 0.489

Sec. 8.6: Friction in Noncircular Conduits – Exercises (2)
For laminar flow between two parallel, flat plates a small distance d apart, at what distance from the centerline (in terms of d) will the velocity be equal to the mean velocity?

Let $y_m =$ distance from centerline where $u = V_{\text{mean}}$. From solution to Exer. 8.7.3, $V_{\text{mean}} = (2/3)V_c$.

So when $y = y_m$, $u = (2/3)V_c$, i.e. $(2/3)V_c = V_c(1 - \frac{y_m}{y_0})$; $y_m^2 = (1/3)y_0^2 = (1/3)(d/2)^2$;

$y_m = 0.289d$
8.6. In a 36-in.-diameter pipe velocities are measured as 18.5 fps at r = 0 and 18.0 fps at r = 4.0 in. Approximately what is the flow rate? Assume laminar flow.

Solution

For laminar flow, \(u = Vc \left(1 - \left(\frac{r}{R} \right)^2 \right) \)

with \(R = 36 \text{ in} \), and \(u = 18.5 \text{ fps at } r = 0 \)
\(u = 18.0 \text{ fps at } r = 4.0 \text{ in} \)

\(\left(A \right) \Rightarrow 18.5 \text{ fps} = Vc \left[1 - \left(\frac{0}{36} \right)^2 \right] \Rightarrow 18.5 \text{ fps} = Vc \)

Also, for laminar flow \(\frac{V}{Vc} = 0.5 \Rightarrow V = 0.5 \times 18.5 = 9.25 \text{ fps} \)

\(Q = \pi r^2 V = \pi \times \left(\frac{36}{12 \text{ ft}} \right)^2 \times 9.25 \text{ fps} = 261.54 \text{ cfs} \)