Personal tools
  •  
You are here: Home Electrical and Computer Engineering Stochastic Processes Sequences and Limit Theorems

Sequences and Limit Theorems

Document Actions
  • Content View
  • Bookmarks
  • CourseFeed

Sequences  ::  Convergence  ::  Limit  ::  Central Limit

Convergent sequences of real numbers and functions


\begin{definition}
Let $x_1,x_2,\ldots$ be a sequence of real numbers. This se...
...e $x_n \rightarrow x$, or $\lim_{n\rightarrow \infty} x_n = x$.
\end{definition}
For real numbers (which are complete), a necessary and sufficient condition:

\begin{displaymath}\{x_n\}_{n=1}^\infty \text{ converges} \Leftrightarrow
\lim_{n\rightarrow\infty} \sup_{m>n} \vert x_m - x_n\vert = 0.
\end{displaymath}

The latter condition says that $\{x_n\}$ is a Cauchy sequence .
\begin{definition}
Suppose $f_1, f_2, \ldots$ is a sequence of {\em functions}...
...hat $\vert f_n(x) - f(x)\vert
< \epsilon$ for all $n \geq N$.
\end{definition}
(It may be necessary to choose a different $N$ for each $x$ .)
\begin{definition}
We say that $f_n$ converges {\bf uniformly} to $f$ if for ...
...psilon$ for all $n \geq N$ {\bf and for all } $x \in \Omega$.
\end{definition}
Copyright 2008, Todd Moon. Cite/attribute Resource . admin. (2006, May 31). Sequences and Limit Theorems. Retrieved January 07, 2011, from Free Online Course Materials — USU OpenCourseWare Web site: http://ocw.usu.edu/Electrical_and_Computer_Engineering/Stochastic_Processes/lec5_1.html. This work is licensed under a Creative Commons License Creative Commons License