Personal tools
  •  
You are here: Home Electrical and Computer Engineering Information Theory Introduction to Information Theory

Introduction to Information Theory

Document Actions
  • Content View
  • Bookmarks
  • CourseFeed

Communications Model   ::   Fundamental Concept   ::   Channel Models

Some simple discrete channel models

The binary symmetric channel:

#2pt xxxxxx#2ptsplain#1#2#3#1<17 #1<20 #1<24 #1<29 #1<34 #1<41 #3 #1#2#3
#125<25
#2pt pt@pt #3

\begin{picture}
(2625,1305)(1576,-4147)
\thicklines\put(2101,-3961){\vector( 1, ...
...3976,-3961){\makebox(0,0)[lb]{\smash{\SetFigFont{12}{14.4}{rm}1}}}
\end{picture}

The parameter p is the probability of error . For many channels we can explicilty compute p . For example, for BPSK

\begin{displaymath}p = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)
\end{displaymath}

The channel is characterized by its conditional probabilities:

\begin{displaymath}P(Y=0\vert X=0) = 1-p\qquad P(Y=1\vert X=0) = p \end{displaymath}

\begin{displaymath}P(Y=0\vert X=1) = p\qquad P(Y=1\vert X=1) = 1-p \end{displaymath}

Copyright 2008, by the Contributing Authors. Cite/attribute Resource . admin. (2006, May 17). Introduction to Information Theory. Retrieved January 07, 2011, from Free Online Course Materials — USU OpenCourseWare Web site: http://ocw.usu.edu/Electrical_and_Computer_Engineering/Information_Theory/lecture1_4.htm. This work is licensed under a Creative Commons License Creative Commons License