Let X be the time required to complete a test with a maximum completion time of 2 hours. The data used in the analysis is collected every 15 minutes, resulting in the following table of probabilities for values of $x = 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00$.

<table>
<thead>
<tr>
<th>x</th>
<th>$P(X=x)$</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
<th>1.75</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Plot the probability mass function (pmf) for X.

(b) Calculate a table of the cumulative distribution function (CDF) for X.

(c) Plot the cumulative distribution function (CDF) for X.

Calculate the following probabilities:

(d) $P(X = 1.25)$
(e) $P(X \leq 1.50)$
(f) $P(X < 1.50)$
(g) $P(X \leq 0.75)$

(h) $P(X > 1.00)$
(i) $P(X \geq 1.00)$
(j) $P(0.75 \leq X \leq 1.75)$
(k) $P(0.75 < X \leq 1.75)$

(l) $P(0.75 \leq X < 1.75)$
(m) $P(0.75 < X < 1.75)$
(n) $P(1 < X < 1.25)$
(o) $P(0.8 < X < 1.65)$

(n) Calculate the expected value, or mean, of X.

(o) Calculate the variance of X.

(p) Calculate the standard deviation of X.

(q) Calculate the skewness of X.

(r) Calculate the kurtosis of X.

Let $Y = g(X) = 20X^2$ represent the cost, in dollars, of monitoring the test for X hours. What is the expected value of Y?

(t) What is the variance of Y?

Let X represent the number of defects per square inch found in a photographic film while calibrating a new film-producing machine. The table below shows that cumulative distribution function for X:

<table>
<thead>
<tr>
<th>x</th>
<th>$F(x)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Calculate a table of the probability mass function (pmf) for X.

(b) Plot the probability mass function (pmf) for X.

(c) Plot the cumulative distribution function (CDF) for X.

Calculate the following probabilities:

(d) $P(X = 2)$
(e) $P(X \leq 4)$
(f) $P(X < 4)$
(g) $P(X \leq 2)$

(h) $P(X > 2)$
(i) $P(X \geq 2)$
(j) $P(1 \leq X \leq 4)$
(k) $P(1 < X \leq 4)$

(l) $P(1 \leq X < 4)$
(m) $P(1 < X < 4)$
(n) $P(1.5 < X < 4.5)$
(o) $P(3 < X < 4)$

(n) Calculate the expected value, or mean, of X.

(o) Calculate the variance of X.

(p) Calculate the standard deviation of X.

(q) Calculate the skewness of X.

(r) Calculate the kurtosis of X.
Let X represent the number of droplets per cubic inch detected in the air over an arid region by using a Doppler radar measurement. It is suggested that the probability mass function of X is given by

$$f(x) = \begin{cases} \frac{c}{x^2}, & \text{for } x = 0, 1, \ldots, 10 \\ 0, & \text{otherwise} \end{cases}$$

(a) Calculate the value of c so that $f(x)$ is a proper probability mass function (pmf) for X.
(b) Plot the probability mass function (pmf) for X.
(c) Plot the cumulative distribution function (CDF) for X.

Calculate the following probabilities:

(d) $P(X = 3)$
(e) $P(X \leq 4)$
(f) $P(X < 4)$
(g) $P(X \leq 2)$
(h) $P(X > 2)$
(i) $P(X \geq 2)$
(j) $P(1 \leq X \leq 4)$
(k) $P(1 < X \leq 4)$
(l) $P(1 \leq X < 4)$
(m) $P(1 < X < 4)$
(n) $P(1.5 < X < 4.5)$
(o) $P(3 < X < 4)$

(n) Calculate the expected value, or mean, of X.
(o) Calculate the variance of X.
(p) Calculate the standard deviation of X.
(q) Calculate the skewness of X.
(r) Calculate the kurtosis of X.

Let X represent the bending strength (in N/mm^2) of timber samples for a given species of trees. After performing a large number of tests it is found that the probability density function of X is given by

$$f(x) = \begin{cases} c \cdot \sqrt{x}, & \text{for } 10 < x < 40 \\ 0, & \text{otherwise} \end{cases}$$

(a) Calculate the value of c so that $f(x)$ is a proper probability density function (pdf) for X.
(b) Plot the probability mass function (pmf) for X.
(c) Obtain an expression for the cumulative distribution function (CDF) of X, i.e., $F(x)$.
(d) Plot the cumulative distribution function (CDF) for X.

Calculate the following probabilities:

(e) $P(X = 30)$
(f) $P(X \leq 25)$
(g) $P(X < 25)$
(h) $P(X > 25)$
(i) $P(X \geq 25)$
(j) $P(15 \leq X \leq 35)$
(k) $P(15 < X \leq 35)$
(l) $P(15 \leq X < 35)$
(m) $P(15 < X < 35)$

(n) Calculate the expected value, or mean, of X.
(o) Calculate the variance of X.
(p) Calculate the standard deviation of X.
(q) Calculate the skewness of X.
(r) Calculate the kurtosis of X.
(s) Let $Y = g(X) = \sqrt{X}$ represent the maximum elongation, in mm, of the timber piece. What is the expected value of the elongation Y?
(t) What is the variance of Y?
Let X represent the time to failure, in months, of a delicate electronic component in a probe. Data from the manufacturer suggests that the probability density function for X, $f(x)$, can be represented by the triangular diagram shown below. [Note: this pdf represents a triangular distribution with the ordinate c known as the mode of the distribution].

(a) Calculate the value of c so that $f(x)$ is a proper probability density function (pdf) for X, if $a = 30$ and $b = 10$.

(b) Write out the expressions for the probability density function $f(x)$. This will be a piecewise function of the form

$$f(x) = \begin{cases} f_1(x), & \text{for } 0 < x < a \\ f_2(x), & \text{for } a < x < a + b \\ 0, & \text{otherwise} \end{cases}$$

(c) Obtain an expression for the cumulative distribution function (CDF) of X, i.e., $F(x)$.

(d) Plot the cumulative distribution function (CDF) for X.

Calculate the following probabilities:

(e) $P(X = 30)$ (e) $P(X \leq 25)$ (f) $P(X < 25)$ (g) $P(X \leq 15)$

(h) $P(X > 15)$ (i) $P(X \geq 15)$ (j) $P(15 \leq X \leq 35)$ (k) $P(15 < X \leq 35)$

(l) $P(15 \leq X < 35)$ (m) $P(15 < X < 35)$

(n) Calculate the expected value, or mean, of X.

(o) Calculate the variance of X.

(p) Calculate the standard deviation of X.

(q) Calculate the skewness of X.

(r) Calculate the kurtosis of X.

Two rivers, one carrying a discharge X and another carrying a discharge Y, join together into a third river with a discharge Z. Because of seepage losses in the tributary rivers the discharge Z is given by $Z = 0.9X + 0.85Y$. (a) If the expected values of discharges X and Y are $E(X) = 135$ cfs (cubic feet per second) and $E(Y) = 85$ cfs, what is the expected value of the discharge Z? (b) If the variances of the discharges X and Y are $\text{Var}(X) = 100$ cfs2 and $\text{Var}(Y) = 25$ cfs2, what is the variance of the discharge Z? (c) What is the standard deviation of the discharge Z?